Collectively Embedding Multi-Relational Data for Predicting User Preferences

نویسندگان

  • Nitish Gupta
  • Sameer Singh
چکیده

Matrix factorization has found incredible success and widespread application as a collaborative filtering based approach to recommendations. Unfortunately, incorporating additional sources of evidence, especially ones that are incomplete and noisy, is quite difficult to achieve in such models, however, is often crucial for obtaining further gains in accuracy. For example, additional information about businesses from reviews, categories, and attributes should be leveraged for predicting user preferences, even though this information is often inaccurate and partially-observed. Instead of creating customized methods that are specific to each type of evidences, in this paper we present a generic approach to factorization of relational data that collectively models all the relations in the database. By learning a set of embeddings that are shared across all the relations, the model is able to incorporate observed information from all the relations, while also predicting all the relations of interest. Our evaluation on multiple Amazon and Yelp datasets demonstrates effective utilization of additional information for held-out preference prediction, but further, we present accurate models even for the cold-starting businesses and products for which we do not observe any ratings or reviews. We also illustrate the capability of the model in imputing missing information and jointly visualizing words, categories, and attribute factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Querying with Intrinsic Preferences

The handling of user preferences is becoming an increasingly important issue in present-day information systems. Among others, preferences are used for information filtering and extraction to reduce the volume of data presented to the user. They are also used to keep track of user profiles and formulate policies to improve and automate decision making. We propose a logical framework for formula...

متن کامل

Relational fuzzy approach for mining user profiles

Capturing the characteristics and preferences of Web users into user profiles is a fundamental task to perform in order to implement forms of personalization on a Web site. In this paper, we present a relational fuzzy clustering approach to extract significant user profiles from session data derived from log files. In particular, a modified version of the CARD clustering algorithm is proposed i...

متن کامل

Algebraic Optimization of Relational Queries with Various Kinds of Preferences

Preferences can be used for information filtering and extraction to deliver the most relevant data to the user. Therefore the efficient integration of querying with preferences into standard database technology is an important issue. The paper resumes a logical framework for formulating preferences and their embedding into relational algebra through a single preference operator parameterized by...

متن کامل

Web User Profiling Using Relational Fuzzy Clustering

User profiling is a fundamental task in Web personalization. In this paper, we use a relational fuzzy clustering to discover user profiles from Web log data. Precisely, a modified version of the CARD algorithm, called CARD+, is proposed to discover clusters embedded in the Web usage data and derive profiles modeling the real user preferences. Experimental results on log data extracted from log ...

متن کامل

Preference Queries

The handling of user preferences is becoming an increasingly important issue in present-day information systems. Among others, preferences are used for information filtering and extraction to reduce the volume of data presented to the user. They are also used to keep track of user profiles and formulate policies to improve and automate decision making. We propose here a simple, logical framewor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1504.06165  شماره 

صفحات  -

تاریخ انتشار 2015