Collectively Embedding Multi-Relational Data for Predicting User Preferences
نویسندگان
چکیده
Matrix factorization has found incredible success and widespread application as a collaborative filtering based approach to recommendations. Unfortunately, incorporating additional sources of evidence, especially ones that are incomplete and noisy, is quite difficult to achieve in such models, however, is often crucial for obtaining further gains in accuracy. For example, additional information about businesses from reviews, categories, and attributes should be leveraged for predicting user preferences, even though this information is often inaccurate and partially-observed. Instead of creating customized methods that are specific to each type of evidences, in this paper we present a generic approach to factorization of relational data that collectively models all the relations in the database. By learning a set of embeddings that are shared across all the relations, the model is able to incorporate observed information from all the relations, while also predicting all the relations of interest. Our evaluation on multiple Amazon and Yelp datasets demonstrates effective utilization of additional information for held-out preference prediction, but further, we present accurate models even for the cold-starting businesses and products for which we do not observe any ratings or reviews. We also illustrate the capability of the model in imputing missing information and jointly visualizing words, categories, and attribute factors.
منابع مشابه
Querying with Intrinsic Preferences
The handling of user preferences is becoming an increasingly important issue in present-day information systems. Among others, preferences are used for information filtering and extraction to reduce the volume of data presented to the user. They are also used to keep track of user profiles and formulate policies to improve and automate decision making. We propose a logical framework for formula...
متن کاملRelational fuzzy approach for mining user profiles
Capturing the characteristics and preferences of Web users into user profiles is a fundamental task to perform in order to implement forms of personalization on a Web site. In this paper, we present a relational fuzzy clustering approach to extract significant user profiles from session data derived from log files. In particular, a modified version of the CARD clustering algorithm is proposed i...
متن کاملAlgebraic Optimization of Relational Queries with Various Kinds of Preferences
Preferences can be used for information filtering and extraction to deliver the most relevant data to the user. Therefore the efficient integration of querying with preferences into standard database technology is an important issue. The paper resumes a logical framework for formulating preferences and their embedding into relational algebra through a single preference operator parameterized by...
متن کاملWeb User Profiling Using Relational Fuzzy Clustering
User profiling is a fundamental task in Web personalization. In this paper, we use a relational fuzzy clustering to discover user profiles from Web log data. Precisely, a modified version of the CARD algorithm, called CARD+, is proposed to discover clusters embedded in the Web usage data and derive profiles modeling the real user preferences. Experimental results on log data extracted from log ...
متن کاملPreference Queries
The handling of user preferences is becoming an increasingly important issue in present-day information systems. Among others, preferences are used for information filtering and extraction to reduce the volume of data presented to the user. They are also used to keep track of user profiles and formulate policies to improve and automate decision making. We propose here a simple, logical framewor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1504.06165 شماره
صفحات -
تاریخ انتشار 2015